
J .  Fluid Mech. (1994), vol. 214, pp .  69-92 
Copyright 0 1994 Cambridge University Press 

69 

The hydraulic jump in a viscous laminar flow 
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The hydraulic jump appearing in the viscous laminar flow of a thin liquid layer over 
a finite horizontal plate is studied using the boundary-layer approximation for the flow 
in and around the jump. The position and structure of the jump are determined by 
numerically solving the resulting problem with a boundary condition at the edge of the 
plate that expresses the matching of the layer with the shorter region where the liquid 
turns around and falls under the action of gravity. When the Froude number of the 
flow ahead of the jump is very large, the jump is much shorter than the horizontal 
extent of the layer, though still much longer than its depth. An asymptotic description 
of the inner structure of such a jump is given, building upon the analysis of Bowles & 
Smith for the short interaction region at the leading end of the jump. This structure 
consists of a fast moving separated flow in the upper part of the layer that progressively 
slows down by ingesting new fluid across its lower boundary, until the hydrostatically 
generated adverse pressure gradient makes it recirculate in the lower part of the layer. 
The effects of the surface tension and the cross-stream pressure variation owing to the 
curvature of the streamlines are taken into account in the jump and in the flow 
approaching the edge of the plate, showing that they can lead to quantitative and also 
qualitative changes of the jump structure, including a local breakdown of the 
boundary-layer approximation. 

1. Introduction 
Steady hydraulic jumps are a common phenomenon in the flow of liquid layers over 

horizontal solid surfaces. These layers, generated for example by a falling jet striking 
the solid or by the flow under a sluice gate, evolve smoothly until a certain position, 
depending on the downstream conditions, at which their depth undergoes a rapid 
increase. The flow in the layer upstream of the jump may remain laminar for 
moderately large Reynolds numbers, but its velocity is seldom uniform, except possibly 
near the beginning of the layer, owing to the action of viscosity. In the case of a falling 
jet, the Froude number near the impact region can be very large, being of the order of 
the ratio of the head of the falling liquid to the size of the cross-section of the jet. This 
is also the order of the square of the maximum possible ratio of liquid depths across 
the subsequent hydraulic jump, according to the classical theory of Rayieigh, while the 
observed ratios are much smaller (even for planar flows) when viscous effects play a 
role upstream of the jump. 

An analysis of the motion in the planar or axisymmetric liquid layer upstream of a 
jump has been carried out by Watson (1964) using the boundary-layer approximation 
for laminar and (in an approximated form) turbulent flows. Neglecting the effect of the 
pressure gradient due to the gravity, he found that a self-similar flow sets in after a 
relatively short adjustment region, which he also analysed by means of an integral 
method. Applying then the conditions of continuity and of balance of momentum 
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across the jump, treated as a discontinuity in accordance with the classical theory, 
Watson obtained a relation between the position of the jump and the depth of the 
liquid downstream. Finally, noticing that his experimental data for axisymmetric 
jumps fell systematically somewhat off this theoretical prediction, he went on to explain 
how the latter can be improved by taking into account the effects of the finite length 
of the jump in the balance of momentum. 

Similar experiments have been performed by Larras ( I  962), Olsson & Turkdogan 
(1966), and Nakoryakov, Pokusaev & Troyan (1978), for axisymmetric flows, while the 
heat transfer characteristics of these flows, of interest for chemical, metallurgical, and 
microgravity applications, have been investigated by Chaudhury (1964), following the 
steps of Watson (1964), Rahman, Hankey & Faghri (1991), and experimentally by 
Ishigai et al. (1977). Olsson & Turkdogan measured the liquid depth and found that 
the surface velocity upstream of the jump decreased with radial distance more slowly 
than predicted by Watson. Nakoryakov er al. showed that negative values of the skin 
friction occur within the jump, indicating that the boundary layer separates there and 
a zone of reversed flow exists near the wall. 

Craik et al. (1981) visualized a substantial region of reversed flow at the bottom of 
the layer and a rapid forward-moving flow in the upper part, which remains rapid for 
some distance behind the jump by riding over the slower recirculating fluid with very 
small friction losses. They measured the liquid depth by a light-absorption technique, 
pointing out that the surface tension leads to small oscillations of the surface 
immediately ahead of the main jump, and remarked that the flow within the jump is 
complex and varies markedly with changing conditions. They also reported an 
instability of the flow when the radius of the jump is made to decrease, and related the 
onset of this instability with a critical value of the (local) Reynolds number. 

Using flow visualization and laser anemometry, Bouhadef (1978) found that, in 
some conditions, the jump has a different structure, consisting of a wall jet flowing 
under a region of lower velocity, and that a continuous transition from supercritical to 
subcritical flow takes place in the wall jet. He also carried out computations with an 
integral method and parabolic velocity profiles in the different regions of the flow, 
claiming good agreement with his experimental results. 

The idea that the hydraulic jump in a viscous laminar flow might be a form of 
boundary-layer separation due to an adverse hydrostatically generated pressure 
gradient dates back to Tani ( 1  948) and Kurihara (1946), though the conclusions they 
drew from this idea seem to be incorrect. Gajjar & Smith (1983) analysed the process 
leading to a hydraulic jump in a uniform velocity layer with a thin viscous sublayer at 
its bottom in the limit of large Reynolds numbers (based on the depth of the layer). 
They showed that the jump is the result of a viscous-inviscid interaction taking place 
in a region that is long compared with the thickness of the liquid layer but short 
compared with its viscous adjustment length. It is only in a thin viscous sub-sublayer 
near the wall that the flow reacts to the hydrostatic pressure gradient induced by the 
displacement of the sub-sublayer itself, and ends up separating from the wall, while the 
flow in the bulk of the layer is merely displaced upward and does not slow down in the 
interaction region. Overall, this interaction amounts to a branching of the flow from 
the upstream unperturbed state, adjusting itself to the downstream conditions. Bowles 
& Smith (1992) extended this analysis to the realistic situation in which the effect of 
viscosity extends to the whole incident layer. They studied the important case of large 
Froude-number flows, in which the interaction region is very short, and found that the 
effects of surface tension and cross-stream pressure variation due to streamline 
curvature strongly influence the flow in the interaction region under realistic conditions. 
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FIGURE 1. Definition sketch, scaled velocities according to Watson’s solution, and streamlines of 
the flow for S = 9. 

Their results show good agreement with the experimentally determined surface shapes 
of Craik et al. (1981) for the fore part of the jump. 

In this paper, the boundary-layer approximation is taken a step forward to describe 
the flow in the whole of a planar hydraulic jump in the limit of infinite Reynolds 
numbers. It turns out that the boundary-layer problem is not parabolic for any finite 
Froude number, and its solution depends on the downstream conditions, which is one 
of the basic ingredients required for a jump to exist. The other characteristic of a jump, 
its abruptness in the scale of the overall flow, requires, on the contrary, that upstream 
information propagation be difficult or inefficient ahead of the jump. In the present 
viscous flow, this is achieved when the Froude number is very high at the upstream end 
of the layer. Special attention is therefore paid to the double asymptotic limit of large 
Reynolds and Froude numbers, looking for the inner structure of the strong jumps that 
arise in these conditions, which dissipate most of the energy fed into them by the 
incoming flow. The effects of surface tension and cross-stream pressure variation are 
also taken into account, and the latter is shown to lead to a qualitative change in the 
jump structure, involving a local breakdown of the boundary-layer approximation. 

The paper is organized as follows. The boundary-layer problem for the planar flow 
over a finite-length plate is formulated in $2, where some properties of the flow in the 
asymptotic limits of interest are also discussed. Section 3 is devoted to the numerical 
solution of the problem, including a brief description of the numerical method used 
and a discussion of the emerging hydraulic jump and its evolution with increasing 
Froude numbers. The asymptotic structure of the jump for very large Froude numbers 
is analysed in $4, which ties in with the description of Bowles & Smith of the flow in 
the interaction region at the leading end of the jump. Approximate values of the length 
and depth ratio of the jump, and of the friction with the wall, are obtained. A possible 
instability is pointed out, suggested by the nature of the flow in the interior of the jump. 
The effects of surface tension and streamline curvature are discussed in $ 5 ,  where 
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another asymptotic structure is proposed for the case in which the second of these 
effects dominates the flow locally. Lastly, the flow near the edge of the plate, which is 
an integral part of the problem owing to the upstream-propagating influence 
mentioned before, is analysed in an Appendix, showing that the subcritical flow 
approaching the edge speeds up and becomes locally critical, 

2. Formulation and orders of magnitude 
Consider the laminar two-dimensional flow of a layer of liquid over a horizontal 

plate of length 21 owing to the impact of a vertical planar jet on the centre of the plate 
(figure 1). Let 2Q and 2h1 be the flux (per unit length) and width of the jet immediately 
before touching the plate, and Re = Q / v  9 1. This hI is also the depth of the liquid 
layer immediately downstream of the impact region, O(hi), and Q/h, is the uniform 
horizontal velocity of the flow there. Viscosity will influence the flow in the layer 
further downstream, in a viscous adjustment region of length O(h,Re), if the length of 
the plate is comparable to, or much larger than, this value. 

In the absence of gravity, the flow beyond the adjustment region tends to a self- 
similar state (Watson 1964) of the form u = ( Q z / v X )  U,(7) ,  0 = (Q/X) V,(T,I), h = 
H ,  V X / Q ,  with 7 = Qy/v/ .  Here x is the distance along the plate from the apparent 
origin of the self-similar flow, j j  is the distance normal to the plate, U and 0 are 
the corresponding components of the velocity, and h is the depth of the layer. The 
functions U,(q) and Vw(7) [= 7Uw(7)] are represented in figure 1. Other features of 
this flow, noted here for further reference, are 

H ,  N 1.8138, Uh(0) = Ukdq N 0.6930, U,(H,) N 0.8964, lW 
r"" U&dq N 0.2613. 

J o  

Numerical solution of the relevant boundary-layer equations for the liquid layer with 
a uniform inlet velocity shows that the self-similar state, which only remembers the 
value of the flux Q but not h,, is already established after an adjustment distance XI N 

0.3h1 Re downstream of the impact point of the jet, and that the apparent origin is 
located at a distance xo li 0.705h1 Re upstream of this point. Appropriate scales for the 
depth and velocity of the flow in the layer are therefore h, = vT/Q and u, = Q 2 / v T  
where T =  /+xu is the half-length of the plate augmented by the distance to the 
apparent origin. The distances along the plate are measured from this origin in what 
follows. 

In the limit Re-. co, in which the liquid layer is infinitely smooth and the vertical 
accelerations are negligible, gravity leads to a pressure distribution determined by a 
hydrostatic balance in terms of the local depth. The influence of the gradient of this 
pressure on the flow is measured by the parameter S = gh,/u,2 = gt"v3/Q5, which is the 
inverse of a Froude number. Thus gravity does not play any role if S -+ 1, and 
Watson's solution is then applicable down to the edge of the plate, while, on the 
contrary, this solution becomes invalid on most of the plate if S 1, though it can 
still be valid in a region x = o[Re(Q2/g)i] around the centre of the plate when gh,/ 
(Q/h,)2 -+ 1. (Note that this latter condition is commonly satisfied, because (Q/h,)'/2g 
is the head of the fluid in the jet, typically large compared with its half-width h,. 
Note also that g h / 2  is proportional to S(37/O3 when evaluated with Watson's solution; 
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this quantity serves as a local inverse Froude number and the previous condition on xis  
obtained by setting it equal to one.) Further discussion of this case and of the case 
S = O( 1) is given later in this section. The analysis of the effects of surface tension and 
streamline curvature (which is a finite Re effect) is deferred until 95. 

The flow in the liquid layer obeys the simplified non-dimensional equations (see 
Bowles & Smith 1992) 

au av  -+- = 0, 
ax ay 

au au dh a2u u-+v- = -s-+- 
ax ay dx ay2' 

with the boundary conditions 
u = u = O  at y = O ,  (3) 

(4) 

u = l/h,, h = h, at x = 0.705h,, (5) 

plus appropriate conditions at the edge of the plate, to be discussed below. The 
variables x, y, u, u,  and h have been made non-dimensional; with the factors he, u,, 
u, he/& and he, respectively (in particular, h, = h,/h,). 

A boundary condition is needed at the edge of the plate because the problem is not 
parabolic when S > 0, despite the boundary-layer approximation. This is related to the 
fact that the pressure gradient Sdhldx is not given in advance but must be determined 
as part of the solution, which enables upstream propagation of gravity waves; see the 
results on wave propagation below. The boundary-layer approximation fails in a 
region (1 -x) = O(Re-') around the edge of the plate because the radius of curvature 
of the streamlines there is of the order of the thickness of the layer, and the boundary 
condition sought for should come from matching the boundary layer and this region. 
It turns out, however, that the matching does not require a detailed analysis of the 
latter region; it suffices to impose the requirement that the acceleration of the 
boundary-layer flow must diverge on approaching the edge in anticipation of the much 
stronger accelerations prevailing in the turn around region, where the action of the 
gravity is no longer restricted by the presence of the plate. The asymptotic structure 
that the boundary layer develops for x /* 1 (but still Re (1 - x) B 1) when subject to this 
requirement has been analysed elsewhere in connection with other related problems 
(Daniels 1992; Higuera & Liiian 1993; Higuera 1993), and some of its features are 
summarized in the first part of the Appendix (equations (A 1)-(A 4) with the subscript 
e suppressed and ( - xe) replaced by (1 - x)). Essentially, the horizontal velocity tends 
to a limiting distribution and the depth tends to a limiting positive value for x 7 1, both 
unknown, which are approached with a(u, h)/ax = O[(1 -x)"'], S N 0.308. Details on 
how this boundary condition is implemented in the numerical scheme are given in the 
next section. It should be noted that an alternative singularity exists for equations 
(lE(4) (Brown, Stewartson &Williams 1975; Bowles 1990) in which, up to logarithms, 
dhldx = O[(1 -x)-;]. The numerical results for this and related problems seem to 
favour (A 1) over the alternative singularity when the flow near the edge of a plate is 
at issue. 

The solution of (1)-(5) and the boundary condition at the edge determines the 
distributions of velocity and depth of the layer for given values of S and h,. That this 
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problem has regular solutions representing relatively abrupt transitions between 
different flow regimes (hydraulic jumps) will be shown in the following two sections, 
and some features of these solutions are discussed in the remainder of this section. 
While the existence of even sharper transitions, beyond the scope of the boundary-layer 
approximation, cannot be ruled out (see $9, the results of the following two sections 
strongly suggest that the length of a stationary jump cannot be arbitrarily small in the 
absence of turbulence or downstream wave generation. 

According to the classical theory, a hydraulic jump is a supercritical-to-subcritical 
transition of the flow, in the nature of a shock. (Here the flow is said to be subcritical 
when upstream propagation of small perturbations is possible and supercritical when 
it is not.) Therefore, an analysis of the propagation of small-amplitude waves in the 
present viscous flow can provide a guide to situations in which a jump should be 
expected. The results of this analysis are as follows: (i) the flow near the impact region 
of the jet, where the viscous boundary layer is still very thin, is supercritical if the local 
Froude number S;l = (gh?/Q2)-' is larger than one and subcritical if it is smaller than 
one. This is a well-known result. (ii) Upstream propagation is possible in the 
developing and fully developed flows for any S > 0, owing to the presence of a 
substantial region of low velocity at the bottom of the layer, and becomes impossible 
only when the local Froude number S;' = (Sx3)-' tends to infinity; see Smith & 
Brotherton-Ratcliffe (1990). 

Guided by these results, let us consider a hydraulic jump sitting in a region of S, 6 1, 
which for the flow under scrutiny is the region where Watson's solution would be 
applicable in the absence of the jump (assuming for the time being that it is in the 
developed flow). Note that S, = Sx; immediately ahead of the jump, xJ being the 
position of its upstream end; obviously a xJ < 1, and hence a h, 6 1, is required to 
have a jump with S, 6 1. A good deal of information on these jumps is contained in 
the condition of conservation of the horizontal momentum : 

where 1 and 2 denote the sections immediately upstream and downstream of the jump, 
and the symbol -, with the meaning that the two sides of (6) are of the same order, 
is used here instead of the equality because the friction with the plate between the 8 1 
and 2 has been omitted. As will be seen in $4, the effect of the friction is of the same 
order as the terms displayed in (6), though these jumps are much shorter than the plate. 
Since S, < 1, the second term on the left-hand side of (6) is much smaller than the first, 
and this one can be evaluated using Watson's solution, which gives 

1' u; dy N O.6930/xJ. 

Then (6) implies h, = O[(Sx,)-$ and, since the mass flux is conserved [u, h,  = O( l)], 

[;Sh:]/r '  U ;  dy = O(Sh;) = O(S-~X;~) = O(S;i) % 1, 
0 

so that the momentum flux is negligible compared with the gravity term at the 
downstream end of the jump. Had the symbol - in (6) been replaced by an equality, 
these estimations would lead to h, 5 1.1773/(SxJ)i. However, owing to the friction with 
the plate, the result is h, = /3/(SxJ)z, where /3 is determined by the analysis of the inner 
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structure of the jump. This analysis, carried out in $4, yields the approximate value 
P N 1.25, which is not very different from the factor 1.1773 above, pointing toward a 
relatively small effect of the friction. 

The flow downstream of the jump must be analysed in order to relate the still 
unknown xJ to S.  The previous estimates imply that the convection terms of equation 
(2) are negligible in this region, and then the balance of viscous and pressure forces, i.e. 
Sdhldx = a2u/ay2, with u(0) = (i3u/dy) (h) = 0, gives u = -(is) (dh/dx)y(2h -y) ,  
whereas the condition 1 = s o  u dy = -(is) h3(dh/dx) implies h4(x) - h4( 1) = 
12(1 - x ) / S .  Moreover, it is shown in the Appendix that the effects of inertia reappear 
at a short distance from the edge of the plate, where the flow speeds up and becomes 
locally critical. This is accomplished through a pronounced decrease of the depth of 
the liquid, so that the appropriate boundary condition for the viscous-dominated 
flow, required for matching with the aforesaid region, is h(1) = 0, leading to h(x) = 
[(12/S)(l-x)]f downstream of the jump, and to h, N (12/S)i (because xJ 4 1). 
Therefore, compatibility with the h, obtained in the previous paragraph requires 

Other quantities of interest are 

Sf 2- - 3.5546-. 
P2 

0.523 6P2 h 
Si ’ h, 

h, ili 

Note that (7) implies S + 1 and S, = O(S-i). Then, from (8), h,/h, % 1 for these jumps, 
which are therefore very strong according to the classical classification. 

The upstream displacement of the jump with increasing S comes to an end when xJ 
in (7) becomes comparable to the adjustment length of the flow (of order h, in non- 
dimensional variables), which happens for S = O(h;’). Thus a strong jump exists in the 
region of fully developed flow for 1 4 S 4 hY2. As will be seen in the next section, no 
hydraulic jump exists at all for values of S much larger than hF2, while, at the other 
extreme, the strength of the jump decreases when S decreases, becoming a smooth 
elevation of the surface, of length comparable to that of the plate, when S = O( 1). 

The other supercritical flow condition, pointed out by the result (i) of the wave 
propagation analysis, is covered by the work of Gajjar & Smith (1983), who described 
the leading part of a jump in an almost uniform flow like the one near the impact region 
of the jet for S;’ = (gh”,/e’)>-’ = O( 1) > 1. Such a jump can be realized in the present 
finite plate configuration for h, = O( 1) (corresponding to plate lengths of the order of 
the adjustment length of the flow), in which case S = O( 1) and the size of the jump 
turns out to be comparable to the length of the plate. This jump is pushed into the 
region of non-uniform flow when h, G 1 keeping S = O(l), because the foregoing 
estimates require that x, = O(1). This provides a link with the smooth surface 
elevations mentioned before. 

A few comments about the choice of the present geometrical configuration seem 
appropriate to close this section. As shown by Bohr, Dimon & Putkaradze (1993), no 
stationary solution exists beyond the jump for an infinitely long horizontal plate when 
the friction with the plate is taken into account. Obviously, the idea of a constant liquid 
depth downstream of the jump makes no sense here, and a complex influence of the 
actual conditions away from the jump is at work. While many details of the far field 
may be irrelevant to the flow ahead and around the jump (specially in the limit of very 
strong jumps analysed in $4), they lead to difficult problems when a mathematically 
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closed formulation is sought. On the contrary, a finite-size plate provides a clean cut 
for the flow in the layer, because, as mentioned before, this flow becomes critical on 
approaching the edge, and therefore independent of the conditions further downstream. 

3. Numerical solutions 
3.1. Numerical method 

For the numerical treatment, the second condition (4) is replaced by the equivalent 
condition of conservation of the flux 

q = I u d y = l ,  (9) 

obtained by integrating the continuity equation (1) across the layer and using (5 ) .  The 
variable z = y /h (x )  is used instead of y to reduce the computational domain to a 
square. 

The singularity (A 1) of the boundary-layer solution at the edge of the plate is 
handled numerically by introducing the strained variable 

[ = 1 -(1 -x)p, with 0 < < 1, (10) 

instead of x,  so that, for example, auld( = (1 - x)l-T (au/ax)/p = 0[( 1 - x)"-"] for 
(1 -x) 4 1 (see (A l)), which remains finite if p < 6. Using the strained variable (10) 
and an extrapolation boundary condition amounts to setting an upper limit to the 
worse (algebraic) singularity that the solution can develop at the edge, but it is the 
solution itself which selects the strength of the singularity in the range pl < 6 < 1, and 
a logarithmic plot of au/ax versus (1 -x)  shows that the selected 6 is the one predicted 
by the analysis of the Appendix (see Higuera (1993) for further details and a parametric 
study for different values of p). An appropriate treatment of the viscous sublayer where 
(A 4) holds would also require a strained z-coordinate, but this sophistication was not 
included here, while still keeping good resolution until very close to the edge, by the 
simpler procedure of using a fine grid near the bottom of the layer. 

The resulting equations are discretized using upwind finite differences for the 
convective terms and centred differences for the viscous and pressure gradient terms. 
A pseudotransient iteration is used, which amounts to adding a term proportional to 
au/at to the left-hand side of (2), but not to the condition of conservation of the flux 
(9) (which should be replaced by ah/at+aq/ax = 0 to describe a real transient). The 
viscous and pressure gradient terms (along with (9)) are treated implicitly, and the 
convective terms explicitly. 

The independence of the results of the numerical parameters was checked by 
changing the number and distribution of grid points and the value of p. Typically grids 
of 240 x 60 or 350 x 80 points and 9 = were used to obtain the results that follow. 

3.2. Results and discussion 
Consider first the limit h,+O. In this limit the adjustment length of the flow is 
negligible compared to the length of the plate and Watson's solution is attained very 
rapidly. Hence, the inlet conditions ( 5 )  can be replaced by their limiting form 

(1 1) 
1 

u=-U,(H,z), h =  H,x forx+O, 
X 

which are applied by rewriting the problem in terms of xu and xu. When S is small, the 
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X 

FIGURE 2. Skin friction and liquid depth for several values of S with the boundary conditions 
(11). a, S = 0 . 5 ;  b, S =  1 ; c ,  S = 2 ; d , S = 4 ; e ,  S = 7 ; f ,  S =  10. 

flow is seen to remain supercritical over the whole layer, and the condition at x = 1 has 
very little effect. As S increases, the depth of the layer near the edge first rises faster 
than linearly and then decreases under the action of the condition at the edge. An 
incipient hydraulic jump begins to form and moves steadily upstream and develops a 
recirculation bubble at the bottom as S is further increased, until a form of fully 
developed jump comes into existence when S is still O(1). The size of this jump, 
however, is comparable to that of the plate, so that it can hardly be considered an 
abrupt transition. This structure evolves without apparent qualitative changes, moving 
upstream and decreasing in size as S increases. The streamlines in figure 1 are for S = 
9, and figure 2 shows the distributions of wall shear stress and depth for several S. As 
can be seen, the depth upstream of the jump increases linearly with the distance from 
the origin, reflecting very little influence of the gravity in this region. Then, the depth 
rises very rapidly, even at these moderate values of S, and the recirculation bubble 
takes a quasi-parabolic shape near its leading tip (figure l), which is in qualitative 
agreement with the predictions of Bowles & Smith (1992). The rear tip of the bubble 
is only slightly upstream of the point of maximum depth, and the distance between 
these points decreases with increasing S (figure 2). That the recirculation bubble be 
always in the region of increasing depth is a necessary condition for its equilibrium, 
because the resultant pressure force on the bubble must be directed toward the left in 
figure 1 to balance the shear forces exerted by the wall and by the fluid flowing above 
the bubble, which are directed toward the right. Figure 3 gives the position of the jump, 
defined by the leading tip of the recirculation bubble, and the ratio of the maximum 
depth to the depth at the separation section for several values of S. The agreement of 
xJ with the asymptotic result (7) is good even for moderate values of S. 

The fluxes of momentum and energy, 
h I1 

+M = Jo u2 dy+;Sh2, + E  = J fu3 dy + SII, 
0 
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FIGURE 3 .  Leading end of the jump and ratio of depths for several values of S. The dashed lines 
represent the asymptotic results (7) and (8) for S 4 1. 

respectively, obey 

Upstream of the jump, both quantities are almost independent of S and very close to 
$Mw = 0.6930/x and q5Ew = 0.2613/x2, which correspond to Watson’s solution. A 
large fraction of the total dissipation actually occurs in this region, and it is by this 
means that the very large depth predicted by the inviscid theory for the layer 
downstream of the jump is avoided. Then # E  keeps on decreasing inside the jump, at 
a rate that can be very high for large values of S, and the ratio of energy fluxes across 
the jump decreases in qualitative agreement with the asymptotic result # E , / # E  N 

1.1874$/Sf G 1 for S + 1 (obtained from the analysis of the previous section). ?his 
means that most of the energy entering the jump (mostly kinetic energy) is dissipated 
in its interior, a feature shared by any strong jump, either laminar or turbulent, and 
implying that such jumps cannot be very short, and that their existence depends on 
whether a sufficiently dissipative inner structure actually exists. This issue will be taken 
up in the following section. To see how the dissipation is brought about, note that the 
front of the bubble is close to the surface of the liquid, leaving only a narrow passage 
which becomes narrower as S increases (see figure 1). Thus the flow is forced to 
maintain a high velocity in this region, and the dissipation rate is correspondingly 
large. The quantity (fuz+Sh), which would be constant on each streamline in the 
absence of viscosity, increases along the streamlines entering the jump very close to the 
wall, with small velocity, and decreases along all the other streamlines, and most of this 
decrease occurs in the narrow passage above the bubble. 

Further computations were carried out using the inlet condition ( 5 )  to study the 
influence of the adjustment region of the flow when h, > 0. The resulting position of 
the jump is given in figure 4 for different values of h,. The value of xJ decreases more 
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FIGURE 4. Leading end of the jump as a function of S with the inlet conditions (5) and several values 
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0.1753; 0,  h, = 0.2125; 0, h, = 0.2699. The dashed line represents the result (7). 

rapidly with increasing S when the jump is in the adjustment region (x  < 1.005h,) than 
when it is in the region of developed flow, and a small increase of S suffices to make 
the jump crash onto the inlet once xJ N 1.005h1. This gives rise to another flow regime 
in which the jet gets submerged before touching the plate; such solutions, and the 
possible existence of a range of multiplicity, will not be discussed here. The last few 
points at the left end of some of the sequences in figure 4, which are below the average, 
represent jumps sitting in the adjustment region. The small separations of the points 
in the central part of the figure from a common curve are a measure of the numerical 
errors, since all the data for a given h, were computed with the same number and 
distribution of grid points, which were changed from one h, to another, using finer 
grids for smaller values of h,. 

4. Structure of the jump for very large values of S 
The question of whether an inner structure of the jump exists providing the high 

dissipation rate required for very large local Froude numbers will be addressed here. 
For the purposes of this section, the variables X = x / x J  - 1 ,  j j  = y/x, ,  h = h/x,, u” = 
xJ u, and ij = xJ u will be used. The boundary-layer problem (1)-(4) conserves the same 
form when written in terms of these new variables, with S replaced by S, = Sx?. This 
is a small parameter, O(S-i), when xJ is taken from (7). 

Bowles & Smith (1992) (see also Gajar & Smith 1983) described the leading end of 
the jump for S, 4 1 (region I of figure 5 )  as a viscous-inviscid interaction region of 
length O(S,3) where the gravity-induced pressure (as well as the surface tension and the 
cross-stream pressure variations due to the curvature of the streamlines, to be discussed 
in the following section) influence the flow in a viscous sublayer of thickness O(S,). 
Numerical solution of the resulting free interaction problem led Bowles & Smith to the 
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FIGURE 5. Sketch of the asymptotic structure of the jump for S +  co. 

conclusions that the flow separates from the plate leaving an effectively inviscid 
recirculation region of thickness O[S,(X/S3m] for X/S; 9 1, with m = g(2j7-2) 
determined from the analysis of a viscous sublayer that appears at the bottom of the 
recirculating flow, and that viscous effects are confined to this sublayer and to a shear 
layer of thickness O[(X/S$] between the recirculation region and the separated layer. 
Neither the forward moving flow nor the flow in the bulk of the recirculation region 
are affected by the pressure gradient, which is only felt by the weaker flow in the viscous 
sublayer. 

The shear layer at the bottom of the separated flow grows until, for X = O( l), the 
effect of the viscosity extends to the whole of this flow and the scalings of Gajjar & 
Smith need modification. Since the influence of the pressure gradient is still negligible 
in this region (because S, < l), the downstream evolution of the flow coincides with that 
of (half) a two-dimensional jet issuing from a slit with an initial velocity distribution 
given by Watson's solution and its mirror image across the free surface. In particular, 
the mass flux of this jet, 2$,(X) say, can be easily computed by solving a standard 
parabolic problem. For 1 % 1, the flow in the jet takes on the self-similar Bickley's form 
(see, e.g. Batchelor 1970) - 

J - h  $ = XV(0, with 5 = T ,  
x3 

where 3f"' + f ' z  + f f "  = O , f ( O )  =f" (O)  = f ' (  - 00) = 0, and j",Sz d5 = Q M w  z 0.6930, 
whose solution isf=f, tanh(f, 5/6), withf, =f(- 00) = -3iQMW z - 1.8407. Here 
Q M w  is the momentum flux of Watson's flow immediately ahead of the jump, which is 
conserved through the interaction region and beyond, as far as the effect of the pressure 
gradient remains negligible. This effect comes finally into play when C2 = (i3$/8j7)2 = 

O(X-f) becomes of the order of S,k. By then the thickness of the jet is already 
comparable to that of the whole layer (see below), and therefore h" = O($), which 
implies X = O(S;f) and k = O(S;i). 

Before discussing the flow in this latter region, which is the bulk of the bubble, let 
us consider the recirculating flow beneath the jet for X < S;:. When 2 is sufficiently 
large, but still much smaller than S;:, the structure of this flow bears some resemblance 
to that of Gajjar & Smith (1983) in that it is made of an effectively inviscid region 111 
and a thinner viscous sublayer IV (figure 5),  and that, calling 9 = jB E crX" and u" = 
u B ( j )  < 0 the thickness of the bubble and the velocity of the backflow in 111, the local 
pressure gradient is too weak to affect the flow in 111 (because this flow comes from a 
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region to the right where the depth is much larger than in the region of concern, and 
the Bernoulli constant on its streamlines is therefore much larger than Sly",). Hence 
the velocity is constant on each streamline and the balance between the entrainment 
of the jet and the recirculating flow (i.e. (d$Crm/dX)dX = -~,(dy"~/dX)dX, with $= = 
(-YE) Xi and X = (y"/a)l/n ; see figure 5) ,  gives 

Next, call y",(X) the thickness of the viscous sublayer IV. The velocity in this region is 
u" = u", = O[u,(y",)], to match 111, and the balance of convection, viscous force, and 
pressure gradient, which is required to have a y",(f) decreasing in the direction of the 
flow, gives the relations 6f/2 - S,P,/X - u",/y"E. Here the approximation h" M y", has 
been used because the jet is still much narrower than the bubble. These relations, along 
with (14), yield 

- cc y", = 0[~1 /1+3n  ~ 3 n / 1 + 3 n  3 ,  cc=- (2-3n)14, with ii = O( 1) unknown, s, 
n = f((73)+-7) N 0.2573. 

As can be seen, O(JB)  = O(y",) = O($) and O(u",) = O(u",) = O(2-i) for f = O(S;:), 
meaning that the three layers 11-111-IV merge to form the bulk of the bubble (region 
V), as was suggested before. 

The results (15) hold for 1 < X < 5';:. Let us consider now the recirculation region 
for X = O(l), where +,(a) changes from O($) for 2 < 1 to O(&) for X 9 1 .  The 
velocity of the flow entering this region from the right is still given by (14) for 
y", 4 y" < ccXn (because this fluid left the viscous sublayer when X was large) and the 
flow keeps on moving horizontally until it is ingested by the shear layer. The height of 
this shear layer above the plate results from a balance similar to the one sketched in the 
excerpt of figure 5 for region 111, which yields y",(f) = cc[$.,(X)/( -foc)]3n. This result 
applies while j jB 9 j , (2 = l), i.e. for S;(2-3n)i* 4 f < 1. The solution for still smaller 
values of X depends on the evolution of the viscous sublayer in the region 1 = O( l), 
which will not be discussed here. The asymptotic structure of Gajjar & Smith (1983) 
for the recirculation region should be retrieved from this solution for sufficiently small 
values of 2.  

Let ,us return no? to regio? V. Appropriate variables for this region are X = $2, 
Y = S;J, U,= u"/Sf, V = v"/S;, and H = S;h". To leading order in an expansion in 
powers of S:, the equations rewritten in these variables coincide with (1)-(4), with S set 
equal to one; the upstream boundary conditions, required to match the previous stage, 
are 

and (9) becomes s,: Ud Y = 0. This last condition expresses the fact that practically all 
the flux ingested by the jet on top of the bubble, O(S;:) 9 1 in the previous tilde 
variables, must recirculate in its rear part. 

The resulting problem was solved numerically using the method described in the 
previous section (with some minor modifications resulting from replacing (9) by the 
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FIGURE 6. Flow in the recirculation region in the limit S+ a. 

condition of zero flux). A condition of extrapolation was applied at a downstream 
section located far enough to guarantee the independence of the results of this 
condition. (This can be easily achieved, since the velocity rapidly goes to zero 
downstream by virtue of the condition of zero flux.) At the inlet, at a value of X ranging 
from 0.01 to 0.005, the condition (16) for H (with ol unknown) was replaced by the 
relation dH/dX = n H / X ,  obtained by differentiating (16), which lets H adjust itself to 
its correct value. The condition (16) for the velocity was realized approximately by 
imposing an inlet velocity equal to that of the incoming jet on the upper portion of the 
layer (down to a value of { corresponding to 80-90 YO of the whole flux) and letting the 
fluid flow out on the rest of this section. This procedure represents a truncation of the 
self-similar jet velocity profile, and an artificial adjustment region is thereby induced, 
so that the point X = 0 in figure 6, which shows the result of the computations, need 
not coincide with the origin of the bubble. From the numerical solution, the value of 
ii was found to be about 3, though no great accuracy is claimed for this or the following 
numerical results. 

At this leading order, the velocity of the flow is zero and the depth of the layer takes 
a constant value H, 'v 1.25 beyond a point X ,  at a finite distance from the beginning 
of the bubble (see figure 5). Coming back to the original variables, this Ha can be seen 
to coincide with the factor /3 introduced in $2. Knowledge of p, which is only 
approximate from these computations, completely determines the position and 
strength of the jump for a given S + 1, via (7) and (8). 

The structure of the solution for 0 < ( X , - X )  < 1 deserves further analysis. 
Since the velocity tends to zero at X = X,, a local expansion of the form U = 
( X ,  - X ) j  Uo( Y )  + . . . seems appropriate. Values o f j  different from one can be ruled out 
by the following reasonings. If j > 1, the viscous force would dominate over the 
convection term in the momentum equation and the local expansion of the depth 
would be of the form H -  Ho = - ( X ,  - X)j+' A o / ( j +  1) + . . . . However, (2)-(4) give 
then a parabolic distribution for Uo (as in $2), which cannot satisfy the condition of 
zero flux 

U,dY = 0. 

If, on the contrary j < 1, the viscous term would be negligible in the bulk of 
the layer and the expansion of the liquid depth would be of the form H - H ,  = 
- ( X ,  - X)2j  A0/2j+. . . . Now (1)-(4) have a solution (proportional to (19) below) 
satisfying the condition of zero flux, but with Uo(0) = - Uo(Ho) =/= 0, so that a viscous 
sublayer of thickness ( X ,  - X)('-j)I2 is required to satisfy the no-slip condition. 
However, the solution in this sublayer would be one of the Falkner-Skan family, 
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with a singularity at X =  X ,  which probably cannot be removed by a more local 
analysis. One is therefore left with j = 1. In this case the viscous and convection 
terms in (2) are of the same order, but it turns out that the resulting problem for 
( U,( Y), A,) has no solution (as could perhaps have been expected, because the flow in 
the upper part of the layer resembles a boundary layer directed toward a stagnation 
point). These results suggest that logarithmic terms might exist in the expansion : 
U = (Xt-X){[-ln(X,-X)lk U,(Y)+ ...}, with k > 0, in such a way that, formally, the 
effect of the viscosity is still confined to a sublayer of thickness [-In (X ,  - X)]"/" (hence 
with only a mild singularity at X = 1,) while the flow in the upper part of the layer can 
recirculate as for j < 1. Matching of these two regions is possible for k = 2 (see the 
comments at the end of the paragraph following (22)) and, advancing this result, the 
solution in the outer region (Y = O( 1)) is sought in the form 

U =  (X,-X){[-In(X,-X)]2 U,(Y)+[-In&-X)] Ul(Y)+ ...}, 

V = [-In ( X ,  - X)12 V,( Y) + [ - In ( X ,  -X)] V,( Y )  + . . ., 
H = Ho --$(X, - X ) 2  {[ -In ( X ,  -X)14 A,  + [ -In ( X ,  - X>l3 A ,  + . . .}. 

Inserting these expansions into the equations of motion and boundary conditions, and 
separating like powers of -ln(X,-X), we obtain, to leading order, 

] (17) 

Uo-  V; = 0, - U,Z+ V, U ; + A ,  = 0, b(0) = U;(H,) = &(H,) = 0, (18) 

where the primes denote Y-derivatives. The solution of (18) is 

7IV, 7cY 7IY 7c2 V; 
U = --cos-, V, = - V,sin-, A ,  = ~ 

O Ho Ho HO H," ' (19) 

with V, arbitrary. Since Uo(0) =k 0, a boundary layer is required, as was advanced 
before, where Y = [-In ( X ,  - X)] Y = O( 1) and the solution is of the form 

U = ( X ,  - X )  {[-In ( X ,  -X)12 Uo( Y) + [-In ( X ,  -X)] U,( Y) + . . .), 
I/= [-ln(X,-X)] V , ( Y ) + F ( Y ) +  .... } (20) 

Then, to leading order, equations (1)-(3) and the condition of matching with (19) give 
(primes denoting now Y-derivatives), 

a,- v; = 0, - u,Z+ v, q + A ,  = u;, UO(O) = v,(O) = 0, Uo(cQ) = -%. (21) 
Ho 

From the numerical solution of this problem, V, + - (7c V,/H,) r+ d(7c V,/H,)i for 
F+ m, with d N 0.6479. 

The analysis up to this point is incomplete in that V, remains unknown. This 
quantity is determined by the higher-order terms of the asymptotic expansions, whose 
features will be only summarized here. The second term of the outer expansion (17), 
which is forced by the displacement d(7c VJH,); of the viscous sublayer, obeys a linear 
system of equations whose solution can be written in closed form, but does not 
determine V,. The next term (U2,  &,A , )  does not determine V, either. The resulting 
linear equations at this order, as well as those for U, and V,, have singular regular 
points at Y = 0 and Y = Ho and the expansion of U, near the upper singular point 
contains the logarithmic term 
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which induces a term proportional to ln(1- Y / H J  in U, (the coefficient of 

(X, - X )  [-In ( X ,  - X ) ] - 2  

in (17)). Since this is not admissible (the boundary conditions (4) give Ul(Ho) = 

K(Ho) = 0 for all the logarithmic terms in (17)), nor can it apparently be fixed by 
introducing another viscous region near the surface to satisfy the boundary conditions 
there, (22) must be zero, i.e. V, H ,  = 7c3/4d2 N 18.4660, which completes the solution 
near the rear tip of the bubble. Note that the second term in square brackets in (22), 
proportional to d, is due to the displacement of the viscous sublayer, while the other 
term comes entirely from the derivatives of the logarithms in the outer expansion (17). 
The fact that both terms appear in U,, cancelling each other, is a consequence of the 
choice k = 2 (cf. the discussion above (17)), which is thereby justified. 

The neat flux of the layer, equal to Sf in the present variables, has been neglected in 
the analysis of the bubble. This flux will be felt in a shorter region of streamwise length 
AX, with AX(1n AX)’ = Si, centred about X = X, ,  and comprising: a viscous sublayer 
of thickness (-In AX)-‘, and inviscid vortical flow (whose vorticity depends linearly on 
the stream function), and a region of relatively stagnant fluid at the upper right, which 
tends to cover half of the layer far downstream. Further downstream, the growth of the 
viscous sublayer and of the shear layer above the inviscid flow eventually leads to the 
parabolic velocity profile mentioned in $2. 

A couple of remarks follow, to close this section. First, an analysis similar to the 
previous one can be carried out for a circular jump, taking into account the divergence 
of the flow in its interior. For large values of the Froude number at the inlet of the jump 

(19)~-4. Here rl and r2 are the radii of the fore and aft ends of the jump, and h, and 
h, are the corresponding depths. These results, however, are of more limited 
applicability than those for the planar case, because very small values of S, are not so 
easily attained over an extended region owing to the rapid decay of the local Froude 
number in the axisymmetric case (S ,  is proportional to r: for the axisymmetric Watson 
solution). 

Secondly, though no attempt to analyse the stability of the asymptotic solution is 
made here, Bickley’s jet profile at the upper part of the jump should be expected to 
become unstable if S, becomes too small keeping Re = Q / v  constant. This is because 
the Reynolds number of the flow at the inlet of the jump does not depend on xJ, being 
equal to Re for the planar configuration at hand, while the size of the jump relative to 
xJ, and therefore the Reynolds number of the jet, O(Re$), and the length available for 
any instability to develop, increases with decreasing S,. 

This instability, if it exists, would not be unlike that found by Craik et al. (1981) for 
circular jumps, though their interpretation is different, and associated to the 
disappearance of the recirculation bubble. They find that, keeping the flux constant, 
the flow becomes oscillatory and then turbulent in the rear part of the jump when the 
downstream depth is increased and the jump is thereby pushed upstream into regions 
of higher Froude number. Contrarily to the case of planar flow, the length of the jump 
is seen to decrease in this process, but the Reynolds number of the axisymmetric flow 
increases (being proportional to the inverse of the standoff distance of the jump), which 
most probably offsets the decrease of length and may lead to the same instability as 
conjectured before. Experiments on circular jumps showing a wider range of flow and 
stability conditions have been carried out by Liu & Lienhard (1993); these authors 
suggest that some of the observed phenomena might be specific to the axisymmetric 
configuration and related to the effect of surface tension. 

(S ,  5 l), such an analysis gives (h,/h,) and ( r z / r l )  of order S; (=,+2)/3(%+1) with n, = 
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5. Effects of surface tension and streamline curvature 
The effects of the surface tension and the cross-stream pressure variation induced by 

streamline curvature in the interaction region at the leading end of the jump were 
studied by Bowles & Smith (1992). Here, the influence of these effects on the rest of the 
jump and on the flow approaching the edge of the plate is discussed. 

In the non-dimensional variables of $2, the pressure jump across the slightly curved 
surface of the liquid due to the surface tension is 

I T v 3 i  

pQ5 
where T =  __ 

d2h 
APT = -7-@' 

The cross-stream pressure variation due to the curvature of the streamlines is 

(24) 
d2h 
dx2 

ApC = Re-' - F( y), 

where 

The first term of F(y) is a standard result (see, e.g. Messiter & Lifian 1976; Smith & 
Duck 1977). The second term is much smaller than the first one, of O(S1) in the 
interaction region at the leading tip of a strong jump, where u = O(S1) and h = O(S-i), 
but becomes important near the edge of the plate, where a strong streamwise pressure 
gradient exists, and it is necessary to make (25) uniformly valid. A derivation of (24) 
is given in the second part of the Appendix. 

To take into account the pressure variations (23) and (24), the numerical method of 
$2 was slightly modified, writing the momentum equation in the form 

au au au  ah a - a2u 

at  ax ay ax ax aY2 
- + u - + v - = - S -  - - {[ T -  Re-'F(y)] r;r) + - , 

where t is a pseudo-time and I? satisfies A ah/& = a2h/ax2 +I?. This amounts to 
assigning a fictitious inertia to the surface, measured by the constant A ,  which 
facilitates the numerical convergence without affecting the final steady result. 

The conditions for the pressure variations (23) and (24) to influence the viscous 
sublayer of the interaction region are TS3 = O( 1) and Re/& = O( l), respectively, as 
can be verified by using the estimate Ax = O ( , Y 2 )  4 1 for the length of this region. On 
the other hand, the condition Re $/St  4 1 is obtained in the Appendix for a steady 
solution to exist near the edge of the plate (cf. the discussion following (A 15)). This 
condition is incompatible with the previous ones, which means that the surface tension 
cannot be strong enough for its effect to appear in the interaction region unless the 
plate is slightly rounded, being convex toward the fluid. The numerical results of this 
section were obtained for a plate that is flat and horizontal down to a certain distance 
to the edge, in the range $ / S t  4 (1 -x) 4 Tcu+z)/5/Scu+z)/15 (with IT N 0.3640), and 
then curves downward. According to the results of the Appendix, the relations (A 15) 
should hold in this range of (1 -x), and the second derivative of the second of these 
relations implies 

(27) 
d2h 1 +  IT dh/dx 

which makes a suitable boundary condition for the equations (1) and (26). Proceeding 
in this manner, the results depend only on the value of (1 - x) at which (27) is imposed, 

- _ . _ - ~  

dx' 1 - ~ C T  1-x ' 
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FIGURE 7. Skin friction and liquid depth for S = 1.04, Re-' = 0, and three values of T. a, 
4.705 x b, 1.412 x The lengths of the recirculation bubbles are indicated in 
the lower part of the figure. The inlet conditions are ( 5 )  with h, = 0.2125. 

which was fixed once and for all to study the influence of the parameters T and Re-' 
on the position and structure of the jump. 

Figure 7 shows the skin friction and liquid depth for S = 1.04, Re-' = 0, and three 
different values of T. The rapid rise of the surface near the inlet is due to the viscous 
adjustment of the flow, because the inlet condition (5) was used, with h, = 0.2125. One 
effect of the surface tension is to make the surface oscillate ahead of its main elevation, 
a result predicted by the interactive theory of Bowles & Smith and observed in the 
experiments of Craik et al., among others. A single small rise and dip of the surface can 
be seen in figure 7, to be compared with figure 6 of Craik et al. (1981), and an associated 
inverse oscillation appears in the skin friction. Two other effects of capillarity, 
associated with the curvature of the surface near the edge of the plate, are to increase 
the size of the recirculation bubble and to reduce the (negative) slope of the surface 
downstream of the jump. Both of these effects become more pronounced when T is 
increased or when the boundary condition (27) is imposed at a smaller value of (1 - x), 
until finally the numerical method fails to converge. Results for larger values of S, or 
with the inlet condition (1 1) instead of (5), show the same trend, but with jumps shorter 
than those of figure 7. 

The interaction problem with the pressure-displacement relation (24) is known to 
have a characteristic singularity (Smith 1977) representing a strong convergence of 
the flow toward the wall, with the pressure decreasing as - ( x , - x ) - ~  near the 
position (x,) of the singularity. Although this singularity could conceivably be avoided 
for the problem at hand (Bowles & Smith 1992), it seems that the numerical method 
easily brings it in when Re-'/Tgrows, both at what would be the interaction region and 
near the edge of the plate. The influence of Re-' on the numerical solution is at first 
opposite to that of T,  as expected; most noticeably, the bubble becomes slightly shorter 
as Re-' increases. Then, at a certain value of this parameter depending on S and T, the 
solution undergoes an abrupt change, with a roller appearing at the surface and the 

c, 2.353 x 
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FIGURE 8. Streamlines of the flow for S = 1.04, T = 1.412 x and Re-' = 1.2 x 
The inlet conditions are (5) with h, = 0.2125. 

fluid flowing underneath (see figure 8). Locally, this solution resembles the singularity 
predicted by Smith (1977), and the numerical results are probably meaningless in the 
region of strong convergence. Interestingly, the numerical computation does not fail 
completely when Re-' is increased above the value leading to the first appearance of 
the roller, which possibly has to do with the fact that the singularity is never completely 
realized in the present flow, because its existence depends on a continuous decrease of 
the depth leading to a continuous decrease of the pressure, whereas such a decrease of 
depth is arrested here by the recirculating fluid in the roller falling onto the incoming 
flow. It was kindly pointed out by a referee that the boundary-layer approximation 
need not fail locally under these conditions. While this issue remains undecided, further 
computations with refined grids, aimed at fully resolving the structure of the boundary 
layer, suggest that the region of influence of the roller's tip shrinks when the pitch of 
the grid is decreased, and its effect seems too weak to bring the solution out of the 
singularity. Note also that a steady roller with a hydrostatic or quasi-hydrostatic 
pressure distribution can only exist if its size is sufficiently large to have regions of 
positive and negative shear stress at its bottom surface, which must balance each other, 
because the net horizontal pressure force acting on the bubble is zero or negligible. 

Obviously, solutions like the one in figure 8 cannot be accepted without reservation, 
but, on the other hand, the flow depicted in this figure has the correct general 
appearance of many hydraulic jumps, so that the numerical solution might still be 
capturing part of the reality. If these results are accepted as a qualitative guide, an 
asymptotic structure can be constructed for this kind of jump in the limit S- t  co. An 
order-of-magnitude analysis, proceeding along the lines of 84, leads to values of the 
length of the jump and the depth of the liquid at its downstream side of orders A 2  = 

O(S;$) and h", = O(S;$) (the tilde variables and S, are defined in the first paragraph of 
94), while the main features of the asymptotic structure are as follow: the high-Froude- 
number flow crossing under the toe of the jump forms a wall jet whose thickness and 
mass flux are proportional to 2; and 2i, respectively (Glauert 1956). Since this jet ingests 
fluid from the overhead roller, where the Bernoulli constant is uniform, O(S, h"J ,  
the depth of the roller must be of order 2:/(SiL2) in its fore part, until the velocities 
of the fluid in the jet and in the roller become finally comparable for 2 = O(S;t), which 
corresponds to the bulk of the roller. The flow separates from the plate in the rear part 
of the jump, leading to a secondary recirculation bubble already hinted at by the strong 
divergence of the streamlines in figure 8 and actually realized in other computations. 
The terminal structure of the secondary bubble is like the one described in 94. 

I am grateful to Professors A. Lifi6n and J. M. Vega for many enlightening 
discussions. This work was partially supported by the Spanish DGICYT under grants 
ESP 187/90 and PB92-1075. 
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Appendix. Structure of the liquid layer near the edge of the plate 
In this Appendix the subcritical boundary-layer flow approaching the edge of the 

plate is analysed. A boundary condition for equations (1) and (2), reflecting the 
singularity that the boundary-layer solution develops at the edge, will emerge from this 
analysis. 

When S 9 1, the flow downstream of the jump is determined by the balance of 
pressure and viscous forces over most of the plate, which yields a parabolic velocity 
profile and h = [12(1 -x)/S]f (see $2). Evaluating the convective terms of the 
momentum equation (2) with this approximate solution, they can be seen to become 
comparable to the other terms in the equation for (1 - x) = O(S-5) 6 1. Thus the effect 
of the inertia of the fluid reappears at this short distance from the edge, where ( y ,  h )  = 

O(S-f ) ,  (u,u) = O(Si), and 

[xe , ye ,  he, u,, u,, S,] = [$(x- l), Siy, Sfh,  u/Si,  u/Si, I]  

are of order unity. These scaled variables will be used in what follows, but S,, which 
is equal to one, will be left in the equations, partly to help with the bookkeeping, and 
partly because the previous transformation is not required when S = O( I), in which 
case the subscript e can be deleted and S, = S. 

Matching of the solution of (1)-(4) in the region x, = O( 1) with the turn around 
region mentioned in $2 requires that the hydrostatic pressure gradient and the wall 
shear stress in the boundary-layer solution both tend to infinity at the edge. Under the 
action of this strong acceleration, viscous effects are confined to a thin sublayer near 
the plate, while the solution in the rest of the layer is of the form 

U ,  = ~ * ( ~ , ) + ( - x , ) ' U ( y , ) ,  0, = (-x,)'-' V(y,), he = h*+(-x,)'H, (A 1) 

for some 0 < 6 < 1. Here h* and u*(y,) are the unknown limiting depth and velocity 
distribution, with u* N yy;, for some v < 1, when y e  < 1. The equations (1)-(4), 
linearized about the limiting velocity yield 

and U = V'/S,  which is of the form 

The flow in the viscous sublayer is affected by the pressure force due to the gradient 
of he in (A 1). The thickness of this sublayer, yv say, and a first relation between the two 
unknown parameters v and 6 can be obtained from the balance of convection, pressure 
gradient, and viscous forces in the sublayer: u,"/( - x,) - &(he - h*)/(  - x,) - u,/yE, 
with u, = O(y;) to match u*(y,) in (A l), and (he-h*)  = O[(-x , )q .  This gives y ,  = 
0[( -x,)~/("+~)] and 6 = 2a/(a+2). The solution in the viscous sublayer is of the form 
(in terms of the stream function) 

where g(7) satisfies (v + 2) g"' + ag" + (v + 1) gg" + 2uS, H = 0 (obtained by carrying 
(A 4) into (2)), with the boundary conditions g(0) = g'(0) = 0 and the matching 
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condition g' - yv" for 7 +. 00. The solution of this problem has been analysed 
elsewhere (Higuera & Liiian 1993; Higuera 1993), and matching to the outer solution 
(A 1)-(A 3) terms out to require that the coefficient of l/y:-" in (A 3) be zero and that 
n = vc N 0.364 (hence 6 31 0.308). The first of these conditions means that the speed of 
the upstream propagating waves becomes zero at the edge. 

Let us consider now the effect of the surface tension on the flow near the edge. In 
the variables introduced before, the pressure variation (23) due to the surface tension 
becomes - T,d2he/dx,2, where T, = T/Sf will be assumed to be small. Including this 
term in the momentum equation, the solution of (l), (3)-(5) and (26) in the inviscid 
region near the edge of the plate is of the form 

ue = U*(Ye) + Ue(Xe ,ye ) ,  ve = V,(xe,ye), he = h* + He(xe), with (ue, He) << 1, 
(A 5 )  

where (using primes to denote ye-derivatives of u* and xe-derivatives of He), 

au, av, -+- = 0, 
axe aye 

V ,  = 0 at ye  = 0, 

K=u*H:  at ye = h*, 

and a similar expression for U,. Near the wall (where u* N yy l )  this U, takes the form 

where use has been made of the criticality condition S, soh' (dy,/u*') = 1 satisfied by the 
limiting velocity. 

As before, the condition that the hydrostatic pressure gradient should drive 
the flow in the nonlinear viscous sublayer (where ye = 0[( -x,)'~("+~)]) gives He = 
O[( - X,)2"r/("r+z) 1. In addition, the first term of (A 1 1 )  is also of the order of u* in the 
sublayer when (-x,) = O(Ti"+2)15). Using then the scaled variables x, = X , / T ; " + ~ ) / ~ ,  
y1 = Y,/T:/~,  H ,  = H,/T,2"/5, and the streamfunction scaled with T:'+1)/5, the 
problem in the viscous sublayer becomes 

Note that the velocity perturbations induced by the surface tension in the inviscid 
region of the flow (proportional to T,) are small compared with the values of U, and 
V ,  in the absence of surface tension, but these perturbations diverge at the plate faster 
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than the unperturbed quantities and become comparable to them in the viscous 
sublayer. The pressure perturbation due to the surface tension is also much smaller 
than the hydrostatic pressure and does not affect directly the flow in the viscous 
sublayer. 

The problem (A 12)-(A 14) has a solution with the second term of (A 14) going to 
zero for x1 + - co, which coincides with the solution (A 4) for T, = 0 (with x, replaced 
by x1 and = y,/(  - x ~ ) " ( ~ + ~ ) ) .  Then, under the effect of the second term of (A 14), the 
solution of (A 12)-(A 14) develops a singularity at a finite value of xl, which can be 
taken as x1 = 0 after an appropriate shift. For lxll < 1, the viscous effects are confined 
to a thin sub-sublayer, whereas the thickness of the region of nonlinear response and 
the value of HI  are 

y1 = O(lx11-Z/(1-Zr) 1, H~ = q l x 1 1 - 4 ~ / ( 1 - 2 r )  >. (A 15) 

These results come from the balance of inertia and pressure forces in (A 12) and of the 
three terms of (A 14). The region of nonlinear response will cover the whole liquid layer 
when lxll = O(T:1-2")110 ), or Ix,I = O(@, which is the order of the smallest Ix,I for 
which a solution of the boundary-layer equations exists. The pressure perturbation due 
to the surface tension influences the whole layer for these values of lx,l, and would 
become larger than the dynamical pressure of the flow of IxJ < O( @), thus preventing 
any outward motion. Hence is the order of the minimum allowable curvature radius 
of the solid surface in the region around the edges for which a steady solution exists. 
The flow for smaller curvature radii will probably. be time periodic, with liquid 
dammed most of the time under a meniscus at the edge, and released only when its 
volume reaches a certain critical value (see, e.g. Gafian 1989 for the conditions of 
existence of an anchored meniscus). A stationary solution may also exist for a sharp- 
edged plate if Re fi  + 1 (or Re $ / S t  < 1 in the original variables of §2), because then 
the flow would enter the turn-around region before the surface tension overpressure 
becomes too large. 

The effect of the cross-stream pressure variation Apc due to the curvature of the 
stream-lines can be analysed in a similar way. Writing again the solution in the inviscid 
region near the edge in the form (A 5) ,  the equations describing the motion in this 
region are 

V ,  = 0 at ye = 0, 
v,= u*H;, A p c = O  at y e =  h*, 

where (A 18) is the vertical component of the momentum equation. Advancing that, as 
for the case of the surface tension, Apc << Se He and that the velocity perturbations due 
to Apc are small compared with the values of U, and V,  with Re-' = 0, the unperturbed 
V ,  (given by (A 10) with T, = 0) can be used in the left-hand side of (A IS), leading to 

h* dya 
ApC = Re?H; F( ye>, with F(y,) = p' u*' [ 1 - S,  1 , dy:. (A 21) 

Ye Ye 
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Then (A 16) and (A 17) with the conditions (A 19) and (A 20) determine U, and 5, and 
the expansion of this solution for ye < 1 is, neglecting small terms, 

This is analogous to (A 1 l), with Re-2 soh' (F/u*') dye playing the role of - TJS,, and 
the results of the previous case relative to the viscous sublayer apply also here. In 
particular, the condition IxeI < @ for the boundary-layer equations to have a solution 
becomes now Ix,I < Re-', which is obviously satisfied, for IxeI = O(Re-l) corresponds 
to the turn-around region. 
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